腫瘤的發(fā)生發(fā)展是一個(gè)復(fù)雜的過程,涉及一系列遺傳和表觀遺傳的改變。這些改變使得細(xì)胞能夠擺脫正常生長調(diào)控信號(hào)(如外部環(huán)境和內(nèi)部信號(hào))的束縛,獲得自主增殖的能力。其中,錨定非依賴性生長(Anchorage-independent growth)是細(xì)胞惡性轉(zhuǎn)化的重要標(biāo)志之一,而軟瓊脂集落形成實(shí)驗(yàn)(Soft Agar Colony Formation Assay)被認(rèn)為是檢測(cè)細(xì)胞惡性轉(zhuǎn)化的金標(biāo)準(zhǔn)。軟瓊脂集落形成實(shí)驗(yàn)通過在半固體培養(yǎng)基中培養(yǎng)細(xì)胞,觀察其是否能夠在無錨定條件下形成集落,從而判斷細(xì)胞的惡性轉(zhuǎn)化能力。然而,這種方法通常需要3-4周才能獲得結(jié)果,嚴(yán)重拖慢研究進(jìn)度,并且由于依賴人工顯微鏡計(jì)數(shù)集落,難以統(tǒng)一判定導(dǎo)致結(jié)果偏差。最重要的是傳統(tǒng)軟瓊脂實(shí)驗(yàn)無法回收活細(xì)胞,限制了后續(xù)研究的開展。Cellbiolabs新一代CytoSelectTM檢測(cè)系統(tǒng)結(jié)合熒光定量技術(shù)和改良軟瓊脂配方,全面優(yōu)化了實(shí)驗(yàn)流程:CytoSelectTM細(xì)胞轉(zhuǎn)化檢測(cè)試劑盒通過高靈敏度的熒光檢測(cè)法定量細(xì)胞集落,實(shí)驗(yàn)周期從3-4周縮短至1周內(nèi),顯著提高了研究效率,同時(shí)避免了人工計(jì)數(shù)的主觀誤差,尤其適合高通量樣本檢測(cè)。對(duì)于蛋白質(zhì)/DNA芯片分析或癌癥疫苗開發(fā)等應(yīng)用領(lǐng)域而言,使用專用改良軟瓊脂培養(yǎng)基可以輕松回收活化的轉(zhuǎn)化細(xì)胞供進(jìn)一步培養(yǎng)和測(cè)試使用。Fig 1 細(xì)胞活力檢測(cè):按照實(shí)驗(yàn)方案回收HeLa和293細(xì)胞培養(yǎng)6天,用臺(tái)盼藍(lán)法測(cè)定細(xì)胞活力。產(chǎn)品訂購信息:貨號(hào)品名檢測(cè)方法CBA-135CytoSelect? 96-Well Cell Transformation Assay, Cell Recovery Compatible比色法CBA-140CytoSelect? 96-Well Cell Transformation Assay, Cell Recovery Compatible熒光法CBA-130CytoSelect? 96-Well Cell Transformation Assay, Soft Agar Colony Formation熒光法產(chǎn)品部分已發(fā)表文獻(xiàn):1. El Baba, R. et al. (2023). Polyploidy, EZH2 upregulation, and transformation in cytomegalovirusinfected human ovarian epithelial cells. Oncogene. doi: 10.1038/s41388-023-02813-4.2. Hiroki, H. et al. (2023). Targeting Poly(ADP)ribose polymerase in BCR/ABL1-positive cells. SciRep. 13(1):7588. doi: 10.1038/s41598-023-33852-2.3. El Baba, R. et al. (2023). EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection ofhuman astrocytes. Oncogene. doi: 10.1038/s41388-023-02709-3.4. Kantisin, S. et al. (2022). In utero arsenic exposure increases DNA damage and gene expressionchanges in umbilical cord mesenchymal stem cells (UC-MSCs) from newborns as well as in UCMSC differentiated hepatocytes. Toxicol Rep. doi: 10.1016/j.toxrep.2022.09.002.5. Nehme, Z. et al. (2022). Polyploid giant cancer cells, EZH2 and Myc upregulation in mammaryepithelial cells infected with high-risk human cytomegalovirus. EBioMedicine. 80:104056. doi:10.1016/j.ebiom.2022.104056.6. Kim, D.G. et al. (2022). AIMP2-DX2 provides therapeutic interface to control KRAS-driventumorigenesis. Nat Commun. 13(1):2572. doi: 10.1038/s41467-022-30149-2.7. Buranarom, A. et al. (2021). Dichloromethane increases mutagenic DNA damage andtransformation ability in cholangiocytes and enhances metastatic potential in cholangiocarcinomacell lines. Chem Biol Interact. doi: 10.1016/j.cbi.2021.109580.8. Nehme, Z. et al. (2021). Polyploid giant cancer cells, stemness and epithelial-mesenchymalplasticity elicited by human cytomegalovirus. Oncogene. doi: 10.1038/s41388-021-01715-7.9. Andrade, F. et al. (2021). Polymeric micelles targeted against CD44v6 receptor increaseniclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo.J Control Release. 331:198-212. doi: 10.1016/j.jconrel.2021.01.022.10. Wakae, K. et al. (2020). EBV-LMP1 induces APOBEC3s and mitochondrial DNA hypermutationin nasopharyngeal cancer. Cancer Med. doi: 10.1002/cam4.3357.11. Lv, W. et al. (2020). Reprogramming of Ovarian Granulosa Cells by YAP1 Leads to Developmentof High-Grade Cancer with Mesenchymal Lineage and Serous Features. Sci Bull. doi:10.1016/j.scib.2020.03.040.12. Murata, M. et al. (2020). OVOL2-Mediated ZEB1 Downregulation May Prevent Promotion ofActinic Keratosis to Cutaneous Squamous Cell Carcinoma. J Clin Med. 9(3). pii: E618. doi:10.3390/jcm9030618.13. Hernandez, D.M. et al. (2020). IPF pathogenesis is dependent upon TGFβ induction of IGF-1.FASEB J. doi: 10.1096/fj.201901719RR.14. Sand, A. et al. (2019). WEE1 inhibitor, AZD1775, overcomes trastuzumab resistance by targetingcancer stem-like properties in HER2-positive breast cancer. Cancer Lett. 472:119-131. doi:10.1016/j.canlet.2019.12.023.15. Paul, M. et al. (2022). Nitric-Oxide Synthase trafficking inducer (NOSTRIN) is an emerging negative regulator of colon cancer progression. BMC Cancer. 22(1):594. doi: 10.1186/s12885-022-09670-6.16. Kondo, M. et al. (2021). Safety and efficacy of human juvenile chondrocyte-derived cell sheets forosteochondral defect treatment. NPJ Regen Med. 6(1):65. doi: 10.1038/s41536-021-00173-9.17. van der Toorn, M. et al. (2018). The biological effects of long-term exposure of human bronchialepithelial cells to total particulate matter from a candidate modified-risk tobacco product. Toxicol In Vitro. 50:95-108. doi: 10.1016/j.tiv.2018.02.019.18. Montalbano, M. et al. (2016). Modeling of hepatocytes proliferation isolated from proximal and distal zones from human hepatocellular carcinoma lesion. PLoS One. 11:e0153613.19. Choi, B.Y. et al. (2023). Engineered Mesenchymal Stem Cells Over-Expressing BDNF Protect theBrain from Traumatic Brain Injury-Induced Neuronal Death, Neurological Deficits, and CognitiveImpairments. Pharmaceuticals (Basel). 16(3):436. doi: 10.3390/ph16030436.20. Ikeda, J. et al. (2023). Hypoxia inducible factor‐1 activator munc‐18‐interacting protein 3 promotestumour progression in urothelial carcinoma. Clin Transl Disc. 3:e158. doi: 10.1002/ctd2.158.21. Switzer, C.H. et al. (2022). NOS2 and S-nitrosothiol signaling induces DNA hypomethylation andLINE-1 retrotransposon expression. Proc Natl Acad Sci U S A. 119(21):e2200022119. doi:10.1073/pnas.2200022119.22. Furuya, K. et al. (2022). Machine learning extracts oncogenic-specific γ-H2AX foci formationpattern upon genotoxic stress. Genes Cells. doi: 10.1111/gtc.13005.23. Kim, M. et al. (2022). BRAFV600E Mutation Enhances Estrogen-Induced Metastatic Potential ofThyroid Cancer by Regulating the Expression of Estrogen Receptors. Endocrinol Metab (Seoul).37(6):879-890. doi: 10.3803/EnM.2022.1563.24. Toh, P.J.Y. et al. (2022). Optogenetic control of YAP cellular localisation and function. EMBORep. doi: 10.15252/embr.202154401.25. Lee, A.R. et al. (2022). Biomarker LEPRE1 induces pelitinib-specific drug responsiveness byregulating ABCG2 expression and tumor transition states in human leukemia and lung cancer. SciRep. 12(1):2928. doi: 10.1038/s41598-022-06621-w.26. Wang, Y. et al. (2022). Long non-coding RNA OIP5-AS1 suppresses microRNA-92a to augmentproliferation and metastasis of ovarian cancer cells through upregulating ITGA6. J Ovarian Res.15(1):25. doi: 10.1186/s13048-021-00937-3.27. Andriolo, G. et al. (2021). GMP-Grade Methods for Cardiac Progenitor Cells: Cell BankProduction and Quality Control. Methods Mol Biol. doi: 10.1007/7651_2020_286.28. Tan, T.T. et al. (2021). Assessment of Tumorigenic Potential in Mesenchymal-Stem/Stromal-CellDerived Small Extracellular Vesicles (MSC-sEV). Pharmaceuticals. 14(4):345. doi:10.3390/ph14040345.29. Lo, E.K.K. et al. (2021). Low dose of zearalenone elevated colon cancer cell growth through Gprotein-coupled estrogenic receptor. Sci Rep. 11(1):7403. doi: 10.1038/s41598-021-86788-w.30. Park, S. et al. (2021). Cerebral Cavernous Malformation 1 Determines YAP/TAZ SignalingDependent Metastatic Hallmarks of Prostate Cancer Cells. Cancers (Basel). 13(5):1125. doi:10.3390/cancers13051125.參考文獻(xiàn)1. El Baba, R. et al. (2023). Polyploidy, EZH2 upregulation, and transformation in cytomegalovirus infected human ovarian epithelial cells. Oncogene. doi: 10.1038/s41388-023-02813-4. 2. Hiroki, H. et al. (2023). Targeting Poly(ADP)ribose polymerase in BCR/ABL1-positive cells. Sci Rep. 13(1):7588. doi: 10.1038/s41598-023-33852-2. 3. El Baba, R. et al. (2023). EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection of human astrocytes. Oncogene. doi: 10.1038/s41388-023-02709-3. 4. Kantisin, S. et al. (2022). In utero arsenic exposure increases DNA damage and gene expression changes in umbilical cord mesenchymal stem cells (UC-MSCs) from newborns as well as in UC-MSC differentiated hepatocytes. Toxicol Rep. doi: 10.1016/j.toxrep.2022.09.002. 5. Nehme, Z. et al. (2022). Polyploid giant cancer cells, EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human cytomegalovirus. EBioMedicine. 80:104056. doi: 10.1016/j.ebiom.2022.104056.Cell Biolabs公司坐落于美國加利福尼亞州圣地亞哥市,一直致力于開發(fā)生命科學(xué)研究領(lǐng)域的技術(shù)和工具,并將所開發(fā)的創(chuàng)新性技術(shù)成果商業(yè)化。Cell Biolabs孜孜不倦的完善產(chǎn)品,以期使細(xì)胞功能和疾病機(jī)制研究達(dá)到新高度。Cell Biolabs公司的產(chǎn)品獨(dú)具特色并且處于行業(yè)前沿水平,全球眾多大學(xué)、政府研究機(jī)構(gòu)、生物、制藥企業(yè)的科研實(shí)驗(yàn)室均在使用。北京西美杰是Cell Biolabs品牌中國授權(quán)代理,為用戶提供完善的技術(shù)支持與售后服務(wù)。如對(duì)產(chǎn)品感興趣歡迎撥打西美杰客服熱線400-050-4006或登錄網(wǎng)站www.yinaibengfa.cn了解更多信息。更多>
血液制品又稱血漿衍生物,英文名稱為Plasma Derivatives,是指從血漿中8%的血漿蛋白中分離提純得到的物質(zhì)。血漿蛋白由60%的白蛋白、15%的免疫球蛋白、4%的凝血因子和21%的其他蛋白成分組成。從不同的血漿蛋白成分中能夠提取出不同種類的血液制品。 白蛋白作為血漿衍生物中的代表性產(chǎn)品,是維持血漿膠體滲透壓的主要來源,具有調(diào)節(jié)血管內(nèi)外液體平衡以及維持血容量的作用。在臨床上,白蛋白主要用于失血?jiǎng)?chuàng)傷和燒傷等引起的休克、腦水腫,以及肝硬化、腎病引起的水腫或腹水等危重病癥的治療,以及低蛋白血癥患者?;诎椎鞍自谂R床上發(fā)揮的重要作用,中國、歐洲等藥典都對(duì)其有詳細(xì)描述如下: 藥典 章節(jié) 定義 中國藥典2020版 三部 245頁 本品系由健康人血漿,經(jīng)低溫乙醇蛋白分離法或經(jīng)批準(zhǔn)的其他分離法分離純化,并經(jīng)60℃10小時(shí)加溫滅活病毒后制成。制品中應(yīng)加適量的穩(wěn)定劑,按每1g蛋白質(zhì)加入0.16mmol辛酸鈉或0.08mmol辛酸鈉和0.08mmol乙酰色氨酸鈉。 Ph. Eur. 2020 10th Volume 2, Page 2082 Sterile liquid preparation of a plasma protein fraction
containing human albumin. It is obtained from plasma that complies with the monograph Human plasma for fractionation (0853). The preparation may contain excipients such as sodium caprylate (sodium octanoate) or N-acetyl tryptophan or a combination of the two. Ph.USP 2023 (USP46-NF41) Albumin Human Albumin Human is a sterile nonpyrogenic preparation of serum albumin obtained by fractionating merial (source blood, plasma, serum, orlacentas)from healthy human donors, the source materiabeing tested for the absence of hepatitis B surface antigen. lt is a solution containing, in each 100 mL. lt contains no added antimicrobial agent, but maycontain sodium acetyl tryptophanate with or without sodium caprylate as a stabilizing agent. 從各國藥典對(duì)成品白蛋白的定義中可以看出,在白蛋白制劑中有兩個(gè)非常重要的成分,分別是辛酸鈉和N-乙酰色氨酸。這兩種化學(xué)成分在白蛋白制劑中發(fā)揮著無可替代的重要作用,包括: 蛋白穩(wěn)定劑: 防止蛋白質(zhì)聚集和凝集 抑制微生物生長 提高貯存期的穩(wěn)定性 此外,在其他生物制品生產(chǎn)過程中,辛酸鈉和N-乙酰色氨酸的應(yīng)用也十分廣泛。例如,在菌種特殊選育過程中,辛酸鈉可被用作培養(yǎng)基中的添加劑,以改善菌種的生長和目標(biāo)蛋白的表達(dá)特性;有機(jī)化學(xué)基礎(chǔ)研究中,辛酸鈉可以用作一種添加劑或催化劑。在生物醫(yī)學(xué)研究中,N-乙酰-DL-色氨酸被廣泛用于構(gòu)建蛋白質(zhì)微泡,在造影成像、靶向藥物遞送、基因治療等方面發(fā)揮重要作用,尤其在跨越血腦屏障遞送藥物方面具有潛力。在實(shí)驗(yàn)室研究中,N-乙酰-DL-色氨酸可用于識(shí)別細(xì)菌菌株的診斷工具。為了滿足白蛋白成品對(duì)高品質(zhì)原料的需求,AppliChem將辛酸鈉和N-乙酰色氨酸全面升級(jí)為低內(nèi)毒素原料級(jí)別,符合多國藥典。產(chǎn)品詳情如下表。 貨號(hào) 品名 規(guī)格 CAS 636454 Sodium Caprylate (USP-NF, BP, Ph. Eur., ChP) low endotoxin, IPEC grade 辛酸鈉 10kg/25kg 1984-06-1 637763 N-Acetyl-DL-Tryptophan (Ph. Eur, BP) low endotoxin, pharma grade N-乙酰-DL-色氨酸 5kg/25kg 87-32-1 產(chǎn)品特點(diǎn): 符合Ph. Eur、USP、BP、ChP多國藥典· 高純度,低內(nèi)毒素,低金屬雜質(zhì)殘留· 符合ICH Q3D標(biāo)準(zhǔn),對(duì)24種金屬離子殘留進(jìn)行檢測(cè) 截至目前,AppliChem的辛酸鈉和N-乙酰色氨酸已在國際上數(shù)個(gè)白蛋白和其他生物制藥相關(guān)項(xiàng)目中被廣泛使用。 除了辛酸鈉和N-乙酰色氨酸, Applichem還提供其他與血漿衍生物相關(guān)的產(chǎn)品,詳情如下。如有興趣,請(qǐng)聯(lián)系A(chǔ)ppliChem的中國總代理西美杰獲取更多信息。。 貨號(hào) 品名 規(guī)格 CAS號(hào) 63B764 6-Aminohexanoic Acid (Ph. Eur., BP, USP) IPEC grade 6-氨基己酸 5 kg 60-32-2 631632 Sodium Acetate 3-hydrate (Ph. Eur, BP, USP) IPEC grade三水合醋酸鈉 5 kg/25 kg 6131-90-4 西美杰是PanReac AppliChem中國總代理,為用戶提供完善的技術(shù)支持與售后服務(wù)。如對(duì)產(chǎn)品感興趣歡迎撥打西美杰客服熱線400-050-4006或登錄網(wǎng)站www.yinaibengfa.cn了解更多信息。更多>